
International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1571
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Load Balancing Dynamic Job Grouping Based
Schedulimg Algorithm in Grid Computing

Sandeep Kaur, Sukhpreet Kaur

Abstract— Grid Computing is a high performance computing that solves complicated tasks and provides powerful computing abilities. The main pur-
pose of Grid computing is to share the computational power, storage memory, network resource to solve a large problem. Efficient Resource manage-
ment and job scheduling algorithm are key issue in grid computing. Different scheduling algorithms are suitable in different situation based on specific
requirement. User jobs might be small and of varying lengths according to their requirements. Certainly, it is a real challenge to design an efficient
scheduling strategy to achieve high performance in grid computing. In our previous work we surveyed various grouping based job scheduling algorithm
and found that grouping strategy reduce the communication time of small scale jobs, but allocation of large number of jobs to one resource will in-
crease the processing time and leads unbalancing processing load among the resources in grid computing environment. In this paper we proposed a
“Load balancing Dynamic Job Grouping-Based Scheduling in Grid Computing” with the objective of balance the processing load among the selected
resources in grid computing environment at some extent and reducing overall processing time of jobs and improves the throughput of grid resources.

Index Terms—Algorithms,Fine-grained job, Grid computing,Grouping strategy,Job scheduling , Load balancing, Resources management.

—————————— ——————————

1 INTRODUCTION

HE Grid" takes its name from an analogy with
the electrical "power grid. The idea was that accessing

computer power from a computer grid would be as simple as
accessing electrical power from an electrical grid “The term
Grid computing originated in the early 1990 as a metaphor for
making computer power as easy to access as an electric power.
The ideas of the grid (including those from distributed compu-
ting, object oriented programming, cluster computing, web
services and others) were brought together by Ian Foster, Carl
Kesselman and Steve Tuecke, widely regarded as the "fathers
of the grid”. Grid Computing is a form of distributed compu-
ting based on the dynamic sharing of resources between par-
ticipants, organizations and companies to by combining them,
and thereby carrying out intensive computing applications or
processing very large amounts of data. Such applications
would not be possible within a single body or company.
 There are a wide range of heterogeneous
and geographically distributed resources in grid, such as
computational resource, storage resource, equipment resource,
and so forth. Grid resources are geographically distributed
across multiple administrative domains and owned by differ-
ent organizations. Resource management and application
scheduling are very complex due to the large-scale heteroge-
neity presented in resources, management policies, users, and
applications requirements in these environments. Consequent-
ly, many researches are motivated in different aspects of the
job scheduling algorithm. One motivation of grid computing is
to aggregate the power of widely distributed resources, and
provide non-trivial services to users [4]. But, there exist several
applications with a large number of lightweight jobs. It is
wasteful to process a lightweight job with a highly capable
computer. The total overhead of fine-grained jobs scheduling
can be reduced by grouping the lightweight jobs during the
scheduling process for deployment over the grid resources.

Various job grouping based scheduling algorithms in grid
computing have been developed.
Grouping strategy plays a vital role to improve the overall
performance of grid computing environment by minimizing
the communication time. But in existing job grouping based
scheduling strategies, grouping is totally based on resources
capability and bandwidth rate. Jobs are added into the group
until selected resource is not fully occupied. In this way first
resources in sorted out resource list are highly loaded where
as last resources might be lightly loaded and idle. Processing
load among the selected resources are not balanced. Allocation
of large number of jobs to one resource will increase the pro-
cessing time [7] and leads unbalancing processing load among
the resources in grid computing environment [2].
 Load Balancing is a technique which is
used to distribute the workload equally across multiple com-
puters to enhance resource utilization and to reduce the re-
sponse time in grid environment. Main goal of load balancing
is to balance the load across all the processors. It improves the
throughput of grid resources. A good Scheduling algorithm
should assign jobs to resources efficiently and balance the sys-
tem load [8]. The proposed job scheduling strategy takes into
account: (1) number of jobs and resources (2) the processing
requirements for each job, (3) the grouping mechanism of
these jobs, known as a job grouping, according to the number
of jobs in each group, and (4) the transmitting of the job
grouping to the appropriate resource.
 The job grouping is done based on a number
of resources and the total number of jobs.

.

2 RELATED WORK
Although Grids have been used extensively for executing in-

T

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1572
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

tensive jobs, but there are also exist several applications with a
large number of lightweight jobs which needs small pro-
cessing requirements. Sending/receiving each small job indi-
vidually to/from the resources will increase the total commu-
nication time and cost. These applications involve high over-
head time and cost in terms of job transmission to and from
Grid resources and, job processing at the Grid resources. [3]
Grouping strategy efficiently reduces the processing time of
jobs in comparison to others. The total processing capabilities
of each resource may not be fully utilized as; each time the
resource receives a small scaled job. Job grouping strategy
aims to fully utilize the resource reduce the drawbacks on the
total processing time and cost Grid is type of parallel and dis-
tributed system that enables the sharing, selection and aggre-
gation of geographically distributed resources dynamically at
run time depending on their availability, capability, perfor-
mance, cost, and user quality-of self-service requirement[4] A
dynamic job grouping-based scheduling algorithm in [5], jobs
are grouped according to MIPS of the resource. This model
reduces the processing time and communication time of job,
but the algorithm doesn’t take the dynamic resource character-
istics into account and the grouping strategy can’t utilize re-
source sufficiently. Bandwidth-Aware Job Grouping-Based
scheduling strategy that schedules the jobs according to MIPS
and bandwidth of the resource and the model sends grouped
jobs to the resource whose network bandwidth has highest
communication or transmission rate [6]. The TMDGJS in [7]
terms of processing time and overhead time, gives better per-
formance, by minimizing overhead time and computation
time. This strategy play important role in reducing overall
processing time of jobs. Jobs are put alternatively from short-
est list and added into job group according to the processing
capability of the selected resource. However, in [8] the author
state that allocating large number of jobs to one resource will
increase the processing time. So to avoid this situation during
job grouping activity, the total number of jobs group should be
created such that the processing loads among the selected re-
source are balanced. The term "load balancing" [1] refers to the
technique that tries to distribute work load between several
computers, network links, CPUs, hard drives, or other re-
sources, in order to get optimal resource utilization, through-
put, or response. To minimize the time needed to perform all
tasks, the workload has to be evenly distributed over all nodes
which are based on their processing capabilities. This is why
load balancing is needed. The load balancing problem is close-
ly related to scheduling and resource allocation. Grouping
strategy based on the processing capability of selected re-
source. After resource selection, Jobs are started to put into the
group. This process continues until the resource capability is
less to the sum of grouped job requirement. This technique is
also useful in maximum resource utilization, as jobs are
grouped based on resource capability, but some system are

fully occupied whereas other might be remains unutilized or
idle in grid environment [2].

3 GROUPING STRAEGY

Jobs are received and stored in array.Then resources are
sorted out in descending order of their processing capabilities
in MIPS and bandwidth in Mb/s. and jobs according to the
job length .After that total number of jobs and resoures are
calculated and number of jobs in each group is speciefied .

G_size = JList_Size / RList_Size

 jobs are added into group based on group size by alternative-
ly taking jobs from front end i.e. job with higher length and
then rear end of the job list i.e. job with smaller length While
grouping the jobs taken in order of the grouping strategy from
the job list, the above strategy falls into cases given below.

G(i)_size<=G_size

When above condition fails while adding a job alternatively
from job list during the grouping operation, then it stops

grouping and sends the job group to the dispatcher. Then, it
takes resource from sorted out resources list and job group

sent to the corresponding resource for computation. The above
job grouping process is repeated as long as jobs exist.

The adventage of this grouping strategy is as follows.
1) Balance the processing among the selected resources.

2) To start the grouping process with the addition of a job that
involves bigger computational need.
3) To ensure a well combination of bigger and smaller jobs
added into the group
 The proposed job grouping and scheduling algorithm pre-
sented next is illustrated through an example. In this example
15 user jobs with varying processing requirements (MI) are
grouped into five job groups taking into account the number
of jobs group and according to the processing capabilities
(MIPS) of the available resources and the Chunk_size. Re-
source MI is calculated as: RMI=MIPS*Chunk_Size and the
Chunk_Size is taken as 10. Before grouping, the group_size is
speciefied. The jobs are added into according to the grouping
strategy as mentioned and (the first job is always taken from
the front end of the reverse sorted job list Then, the next job is
added from the rear end of the list).

4 ALGORITHM

 1. The scheduler receives the job_List, j[] created by the
user.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1573
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

2. Sort the job_List, according to their MI in decreasing
order.
3 .Count the jobs and store in variable JList_Size .
4. The scheduler receives the Resource_List, R [j].
5. Count the number of resources and store in RList_Size
variable.

 6 Sort the Resources in decreasing order according to their
MIPS.

7. Get the MIPS of the Resource j.
8. Resource_MI=R[j] x Chunk_Size.

 9. Define the total size of each group
 TG_size = JList_Size / RList_Size

 10. Set the Group(i)_size to zero. (i=0,1,2,3……n)

 11. Set the Grouped_Gridlet_Length to zero.
 If Group(i)_size<=TG_size and
 Grouped_Gridlet_Length is less than Resource[j]_MI
 job are selected from sorted out job_list alternatively
and
 added to summation of previous
Grouped_Gridlet_Length and

 Group(i)_size is increment

 else
 Deduct the last job added to Group(i)_size

12. Submit the Group(i)_size to Resource, R[j].
13 Increment i (for next group)
14 Increment j (for next resource in Resource-List) and go-
to step 10

 The proposed job grouping and scheduling algo-
rithm presented next is illustrated through an example. In this
example 15 user jobs with varying processing requirements
(MI) are grouped into five job groups taking into account the
number of jobs group and according to the processing capabil-
ities (MIPS) of the available resources and the Chunk_size.
Resource MI is calculated as: RMI=MIPS*Chunk_Size and the
Chunk_Size is taken as 10. Before grouping, the group_size is
specified. The jobs are added into according to the grouping
strategy as mentioned and (the first job is always taken from
the front end of the reverse sorted job list Then, the next job is
added from the rear end of the list.
 Fig 1 presents a percentage of pro-
cessing load using the both TMDGJS strategy and LBDGJS
strategy.

5 EXAMPLE

 Job_list with job length(MI)

R_list with MIPS

Chunk Size=10
RMI=MIPS*chunk size

 Fig.1
Fig. 1 Comparison of TMDGJS and LBDGJS based on pro-
cessing load among the resources

 Fig.2
 Fig 2 depicts the processing load comparison of two algorithms

1 2 3 4 5 6 7

114 95 30 10 120 35 91

8 9 10 11 12 13 14 15

50 66 150 85 15 5 2 8

Re-
sourceID

R1 R2 R3 R4 R5

MIPS 20 10 30 15 25

Group
No.

Resource
id

Resource
RMI

TMDGJS

LBDGJS

1 3 300 98% 91%

2 5 250 90% 86%

3 1 200 78% 92%

4 4 150 90% 83%

5 2 100 65% 80%

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1574
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

for processing numbers of jobs with different MI on five num-
bers of resources

Used terms and their deffinition

6. CONCLUSION
The job grouping strategy results in increased performance

in terms of balance the processing load among the resources if
it is applied to a Grid application with a large number of jobs
where each user job holds small processing requirements. The
strategy groups the small scaled user jobs into few job groups.
This reduces the communication overhead time and pro-
cessing overhead time of each user job. The Results show that
the proposed LBDGJS is better than TMDGJS for balance the
processing load among the resource which improves the
throughput of resources.

REFERENCES
[1] Ashish Revar, Malay Andhariya, Dharmendra Sutariya,Load Bal-

ancing in Grid Environment using Machine Learning – Innovative

[2] Sandeep Kaur, Sukhpreet Kaur, Survey of Resource and Grouping Based
Job Scheduling Algorithm in Grid Computing”. International Journal of
Computer Science and Mobile Computing. IJCSMC, Vol. 2, Issue. 5, May
2013, pg.214 – 218

[3] Nithiapidary Muthuvelu, Junyang Liu, Nay Lin Soe, Srikumar Venu-
gopal, Anthony Sulistio and Rajkumar Buyya, A Dynamic Job Group-
ing- Based Scheduling for Deploying Applications with Fine-Grained Tasks
on Global Grids.

[4] Quan Liu Yeqing Liao, Grouping-Based Fine- grained Job Scheduling in

Grid Computing” Vol.1,pp.556- 559. IEEE First International Workshop on
Education Technology and Computer Science, 2009.

[5] T.F. Ang, W.K. Ng, T.C. Ling, L.Y. Por and C.S. Liew, 2009. A Band-
width -Aware Job Grouping -Based Scheduling on Grid Environment. In-
formation Technology Journal, 8: 372-377

[6] Manoj Kumar Mishra, Prithviraj Mohanty, G. B. Mund, A Time-
minimization Dynamic Job Grouping based Scheduling in Grid Compu-
ting”, International Journal of Computer Applications (0975 – 8887) Vol-
ume 40– No.16, February 2012

[7] Pinky Rosemarry, Ravinder Singh, Payal Singhal And Dilip Sisodia,
Grouping Based Job Scheduling Algorithm Using Priority Queue And Hy-
brid Algorithm in Grid Computing.

[8] R. Manimala , P.Suresh, Load balanced job scheduling approach for grid
environmentVolume 1, Issue No. 2, April 2013.International Journal Of
Advanced Research In Computer Science And Applications. Volume 1, Is-
sue No. 2, April 2013

MI : Million instructions or processing requirements of a user job
MIPS : Million instructions per second or processing capabilities of a resource
Processing Time : Total time taken for executing the user jobs on the Grid
Job_List : List of user jobs
RList : List of available Grid resources
JList_Size : Total number of user jobs
RList_Size : Total number of available Grid resources
Chunk size : (time in seconds) for the job grouping activity
RMI : MIPS*chunk size
G_size : Total size of each group

G(i)_size : size of each group
Grouped_Gridlet_Length : Length of jobs in million instructions in group.

IJSER

http://www.ijser.org/

	1 Introduction
	2 Related work
	3 Grouping straegy
	4 Algorithm
	5 Example
	6. Conclusion
	References

